3.80 \(\int \frac{(a+b \sin (c+d x^3))^2}{x^6} \, dx\)

Optimal. Leaf size=275 \[ -\frac{3 i a b e^{i c} d^2 x \text{Gamma}\left (\frac{1}{3},-i d x^3\right )}{10 \sqrt [3]{-i d x^3}}+\frac{3 i a b e^{-i c} d^2 x \text{Gamma}\left (\frac{1}{3},i d x^3\right )}{10 \sqrt [3]{i d x^3}}-\frac{3 b^2 e^{2 i c} d^2 x \text{Gamma}\left (\frac{1}{3},-2 i d x^3\right )}{10 \sqrt [3]{2} \sqrt [3]{-i d x^3}}-\frac{3 b^2 e^{-2 i c} d^2 x \text{Gamma}\left (\frac{1}{3},2 i d x^3\right )}{10 \sqrt [3]{2} \sqrt [3]{i d x^3}}-\frac{2 a^2+b^2}{10 x^5}-\frac{2 a b \sin \left (c+d x^3\right )}{5 x^5}-\frac{3 a b d \cos \left (c+d x^3\right )}{5 x^2}-\frac{3 b^2 d \sin \left (2 c+2 d x^3\right )}{10 x^2}+\frac{b^2 \cos \left (2 c+2 d x^3\right )}{10 x^5} \]

[Out]

-(2*a^2 + b^2)/(10*x^5) - (3*a*b*d*Cos[c + d*x^3])/(5*x^2) + (b^2*Cos[2*c + 2*d*x^3])/(10*x^5) - (((3*I)/10)*a
*b*d^2*E^(I*c)*x*Gamma[1/3, (-I)*d*x^3])/((-I)*d*x^3)^(1/3) + (((3*I)/10)*a*b*d^2*x*Gamma[1/3, I*d*x^3])/(E^(I
*c)*(I*d*x^3)^(1/3)) - (3*b^2*d^2*E^((2*I)*c)*x*Gamma[1/3, (-2*I)*d*x^3])/(10*2^(1/3)*((-I)*d*x^3)^(1/3)) - (3
*b^2*d^2*x*Gamma[1/3, (2*I)*d*x^3])/(10*2^(1/3)*E^((2*I)*c)*(I*d*x^3)^(1/3)) - (2*a*b*Sin[c + d*x^3])/(5*x^5)
- (3*b^2*d*Sin[2*c + 2*d*x^3])/(10*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.182991, antiderivative size = 275, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 7, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.389, Rules used = {3403, 6, 3388, 3387, 3356, 2208, 3355} \[ -\frac{3 i a b e^{i c} d^2 x \text{Gamma}\left (\frac{1}{3},-i d x^3\right )}{10 \sqrt [3]{-i d x^3}}+\frac{3 i a b e^{-i c} d^2 x \text{Gamma}\left (\frac{1}{3},i d x^3\right )}{10 \sqrt [3]{i d x^3}}-\frac{3 b^2 e^{2 i c} d^2 x \text{Gamma}\left (\frac{1}{3},-2 i d x^3\right )}{10 \sqrt [3]{2} \sqrt [3]{-i d x^3}}-\frac{3 b^2 e^{-2 i c} d^2 x \text{Gamma}\left (\frac{1}{3},2 i d x^3\right )}{10 \sqrt [3]{2} \sqrt [3]{i d x^3}}-\frac{2 a^2+b^2}{10 x^5}-\frac{2 a b \sin \left (c+d x^3\right )}{5 x^5}-\frac{3 a b d \cos \left (c+d x^3\right )}{5 x^2}-\frac{3 b^2 d \sin \left (2 c+2 d x^3\right )}{10 x^2}+\frac{b^2 \cos \left (2 c+2 d x^3\right )}{10 x^5} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[c + d*x^3])^2/x^6,x]

[Out]

-(2*a^2 + b^2)/(10*x^5) - (3*a*b*d*Cos[c + d*x^3])/(5*x^2) + (b^2*Cos[2*c + 2*d*x^3])/(10*x^5) - (((3*I)/10)*a
*b*d^2*E^(I*c)*x*Gamma[1/3, (-I)*d*x^3])/((-I)*d*x^3)^(1/3) + (((3*I)/10)*a*b*d^2*x*Gamma[1/3, I*d*x^3])/(E^(I
*c)*(I*d*x^3)^(1/3)) - (3*b^2*d^2*E^((2*I)*c)*x*Gamma[1/3, (-2*I)*d*x^3])/(10*2^(1/3)*((-I)*d*x^3)^(1/3)) - (3
*b^2*d^2*x*Gamma[1/3, (2*I)*d*x^3])/(10*2^(1/3)*E^((2*I)*c)*(I*d*x^3)^(1/3)) - (2*a*b*Sin[c + d*x^3])/(5*x^5)
- (3*b^2*d*Sin[2*c + 2*d*x^3])/(10*x^2)

Rule 3403

Int[((e_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(e
*x)^m, (a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0]

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 3388

Int[Cos[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_), x_Symbol] :> Simp[((e*x)^(m + 1)*Cos[c + d*x^n])/(e*(m + 1
)), x] + Dist[(d*n)/(e^n*(m + 1)), Int[(e*x)^(m + n)*Sin[c + d*x^n], x], x] /; FreeQ[{c, d, e}, x] && IGtQ[n,
0] && LtQ[m, -1]

Rule 3387

Int[((e_.)*(x_))^(m_)*Sin[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[((e*x)^(m + 1)*Sin[c + d*x^n])/(e*(m + 1
)), x] - Dist[(d*n)/(e^n*(m + 1)), Int[(e*x)^(m + n)*Cos[c + d*x^n], x], x] /; FreeQ[{c, d, e}, x] && IGtQ[n,
0] && LtQ[m, -1]

Rule 3356

Int[Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)], x_Symbol] :> Dist[1/2, Int[E^(-(c*I) - d*I*(e + f*x)^n), x],
 x] + Dist[1/2, Int[E^(c*I + d*I*(e + f*x)^n), x], x] /; FreeQ[{c, d, e, f}, x] && IGtQ[n, 2]

Rule 2208

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> -Simp[(F^a*(c + d*x)*Gamma[1/n, -(b*(c + d*x)
^n*Log[F])])/(d*n*(-(b*(c + d*x)^n*Log[F]))^(1/n)), x] /; FreeQ[{F, a, b, c, d, n}, x] &&  !IntegerQ[2/n]

Rule 3355

Int[Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)], x_Symbol] :> Dist[I/2, Int[E^(-(c*I) - d*I*(e + f*x)^n), x],
 x] - Dist[I/2, Int[E^(c*I + d*I*(e + f*x)^n), x], x] /; FreeQ[{c, d, e, f}, x] && IGtQ[n, 2]

Rubi steps

\begin{align*} \int \frac{\left (a+b \sin \left (c+d x^3\right )\right )^2}{x^6} \, dx &=\int \left (\frac{a^2}{x^6}+\frac{b^2}{2 x^6}-\frac{b^2 \cos \left (2 c+2 d x^3\right )}{2 x^6}+\frac{2 a b \sin \left (c+d x^3\right )}{x^6}\right ) \, dx\\ &=\int \left (\frac{a^2+\frac{b^2}{2}}{x^6}-\frac{b^2 \cos \left (2 c+2 d x^3\right )}{2 x^6}+\frac{2 a b \sin \left (c+d x^3\right )}{x^6}\right ) \, dx\\ &=-\frac{2 a^2+b^2}{10 x^5}+(2 a b) \int \frac{\sin \left (c+d x^3\right )}{x^6} \, dx-\frac{1}{2} b^2 \int \frac{\cos \left (2 c+2 d x^3\right )}{x^6} \, dx\\ &=-\frac{2 a^2+b^2}{10 x^5}+\frac{b^2 \cos \left (2 c+2 d x^3\right )}{10 x^5}-\frac{2 a b \sin \left (c+d x^3\right )}{5 x^5}+\frac{1}{5} (6 a b d) \int \frac{\cos \left (c+d x^3\right )}{x^3} \, dx+\frac{1}{5} \left (3 b^2 d\right ) \int \frac{\sin \left (2 c+2 d x^3\right )}{x^3} \, dx\\ &=-\frac{2 a^2+b^2}{10 x^5}-\frac{3 a b d \cos \left (c+d x^3\right )}{5 x^2}+\frac{b^2 \cos \left (2 c+2 d x^3\right )}{10 x^5}-\frac{2 a b \sin \left (c+d x^3\right )}{5 x^5}-\frac{3 b^2 d \sin \left (2 c+2 d x^3\right )}{10 x^2}-\frac{1}{5} \left (9 a b d^2\right ) \int \sin \left (c+d x^3\right ) \, dx+\frac{1}{5} \left (9 b^2 d^2\right ) \int \cos \left (2 c+2 d x^3\right ) \, dx\\ &=-\frac{2 a^2+b^2}{10 x^5}-\frac{3 a b d \cos \left (c+d x^3\right )}{5 x^2}+\frac{b^2 \cos \left (2 c+2 d x^3\right )}{10 x^5}-\frac{2 a b \sin \left (c+d x^3\right )}{5 x^5}-\frac{3 b^2 d \sin \left (2 c+2 d x^3\right )}{10 x^2}-\frac{1}{10} \left (9 i a b d^2\right ) \int e^{-i c-i d x^3} \, dx+\frac{1}{10} \left (9 i a b d^2\right ) \int e^{i c+i d x^3} \, dx+\frac{1}{10} \left (9 b^2 d^2\right ) \int e^{-2 i c-2 i d x^3} \, dx+\frac{1}{10} \left (9 b^2 d^2\right ) \int e^{2 i c+2 i d x^3} \, dx\\ &=-\frac{2 a^2+b^2}{10 x^5}-\frac{3 a b d \cos \left (c+d x^3\right )}{5 x^2}+\frac{b^2 \cos \left (2 c+2 d x^3\right )}{10 x^5}-\frac{3 i a b d^2 e^{i c} x \Gamma \left (\frac{1}{3},-i d x^3\right )}{10 \sqrt [3]{-i d x^3}}+\frac{3 i a b d^2 e^{-i c} x \Gamma \left (\frac{1}{3},i d x^3\right )}{10 \sqrt [3]{i d x^3}}-\frac{3 b^2 d^2 e^{2 i c} x \Gamma \left (\frac{1}{3},-2 i d x^3\right )}{10 \sqrt [3]{2} \sqrt [3]{-i d x^3}}-\frac{3 b^2 d^2 e^{-2 i c} x \Gamma \left (\frac{1}{3},2 i d x^3\right )}{10 \sqrt [3]{2} \sqrt [3]{i d x^3}}-\frac{2 a b \sin \left (c+d x^3\right )}{5 x^5}-\frac{3 b^2 d \sin \left (2 c+2 d x^3\right )}{10 x^2}\\ \end{align*}

Mathematica [A]  time = 2.5157, size = 294, normalized size = 1.07 \[ -\frac{6 i a b \sqrt [3]{i d x^3} \left (d^2 x^6\right )^{2/3} (\cos (c)+i \sin (c)) \text{Gamma}\left (\frac{1}{3},-i d x^3\right )+6 i a b \left (i d x^3\right )^{5/3} (\cos (c)-i \sin (c)) \text{Gamma}\left (\frac{1}{3},i d x^3\right )-3\ 2^{2/3} b^2 \cos (2 c) \left (i d x^3\right )^{5/3} \text{Gamma}\left (\frac{1}{3},2 i d x^3\right )+3 i 2^{2/3} b^2 \sin (2 c) \left (i d x^3\right )^{5/3} \text{Gamma}\left (\frac{1}{3},2 i d x^3\right )-3\ 2^{2/3} b^2 \left (-i d x^3\right )^{5/3} (\cos (2 c)+i \sin (2 c)) \text{Gamma}\left (\frac{1}{3},-2 i d x^3\right )+4 a^2+8 a b \sin \left (c+d x^3\right )+12 a b d x^3 \cos \left (c+d x^3\right )+6 b^2 d x^3 \sin \left (2 \left (c+d x^3\right )\right )-2 b^2 \cos \left (2 \left (c+d x^3\right )\right )+2 b^2}{20 x^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[c + d*x^3])^2/x^6,x]

[Out]

-(4*a^2 + 2*b^2 + 12*a*b*d*x^3*Cos[c + d*x^3] - 2*b^2*Cos[2*(c + d*x^3)] - 3*2^(2/3)*b^2*(I*d*x^3)^(5/3)*Cos[2
*c]*Gamma[1/3, (2*I)*d*x^3] + (6*I)*a*b*(I*d*x^3)^(5/3)*Gamma[1/3, I*d*x^3]*(Cos[c] - I*Sin[c]) + (6*I)*a*b*(I
*d*x^3)^(1/3)*(d^2*x^6)^(2/3)*Gamma[1/3, (-I)*d*x^3]*(Cos[c] + I*Sin[c]) - 3*2^(2/3)*b^2*((-I)*d*x^3)^(5/3)*Ga
mma[1/3, (-2*I)*d*x^3]*(Cos[2*c] + I*Sin[2*c]) + (3*I)*2^(2/3)*b^2*(I*d*x^3)^(5/3)*Gamma[1/3, (2*I)*d*x^3]*Sin
[2*c] + 8*a*b*Sin[c + d*x^3] + 6*b^2*d*x^3*Sin[2*(c + d*x^3)])/(20*x^5)

________________________________________________________________________________________

Maple [F]  time = 0.22, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( a+b\sin \left ( d{x}^{3}+c \right ) \right ) ^{2}}{{x}^{6}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(d*x^3+c))^2/x^6,x)

[Out]

int((a+b*sin(d*x^3+c))^2/x^6,x)

________________________________________________________________________________________

Maxima [B]  time = 1.27423, size = 756, normalized size = 2.75 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x^3+c))^2/x^6,x, algorithm="maxima")

[Out]

-1/6*(x^3*abs(d))^(2/3)*(((I*gamma(-5/3, I*d*x^3) - I*gamma(-5/3, -I*d*x^3))*cos(5/6*pi + 5/3*arctan2(0, d)) +
 (I*gamma(-5/3, I*d*x^3) - I*gamma(-5/3, -I*d*x^3))*cos(-5/6*pi + 5/3*arctan2(0, d)) - (gamma(-5/3, I*d*x^3) +
 gamma(-5/3, -I*d*x^3))*sin(5/6*pi + 5/3*arctan2(0, d)) + (gamma(-5/3, I*d*x^3) + gamma(-5/3, -I*d*x^3))*sin(-
5/6*pi + 5/3*arctan2(0, d)))*cos(c) + ((gamma(-5/3, I*d*x^3) + gamma(-5/3, -I*d*x^3))*cos(5/6*pi + 5/3*arctan2
(0, d)) + (gamma(-5/3, I*d*x^3) + gamma(-5/3, -I*d*x^3))*cos(-5/6*pi + 5/3*arctan2(0, d)) + (I*gamma(-5/3, I*d
*x^3) - I*gamma(-5/3, -I*d*x^3))*sin(5/6*pi + 5/3*arctan2(0, d)) + (-I*gamma(-5/3, I*d*x^3) + I*gamma(-5/3, -I
*d*x^3))*sin(-5/6*pi + 5/3*arctan2(0, d)))*sin(c))*a*b*abs(d)/x^2 + 1/60*(2^(2/3)*(x^3*abs(d))^(2/3)*((5*(gamm
a(-5/3, 2*I*d*x^3) + gamma(-5/3, -2*I*d*x^3))*cos(5/6*pi + 5/3*arctan2(0, d)) + 5*(gamma(-5/3, 2*I*d*x^3) + ga
mma(-5/3, -2*I*d*x^3))*cos(-5/6*pi + 5/3*arctan2(0, d)) + (5*I*gamma(-5/3, 2*I*d*x^3) - 5*I*gamma(-5/3, -2*I*d
*x^3))*sin(5/6*pi + 5/3*arctan2(0, d)) + (-5*I*gamma(-5/3, 2*I*d*x^3) + 5*I*gamma(-5/3, -2*I*d*x^3))*sin(-5/6*
pi + 5/3*arctan2(0, d)))*cos(2*c) + ((-5*I*gamma(-5/3, 2*I*d*x^3) + 5*I*gamma(-5/3, -2*I*d*x^3))*cos(5/6*pi +
5/3*arctan2(0, d)) + (-5*I*gamma(-5/3, 2*I*d*x^3) + 5*I*gamma(-5/3, -2*I*d*x^3))*cos(-5/6*pi + 5/3*arctan2(0,
d)) + 5*(gamma(-5/3, 2*I*d*x^3) + gamma(-5/3, -2*I*d*x^3))*sin(5/6*pi + 5/3*arctan2(0, d)) - 5*(gamma(-5/3, 2*
I*d*x^3) + gamma(-5/3, -2*I*d*x^3))*sin(-5/6*pi + 5/3*arctan2(0, d)))*sin(2*c))*x^3*abs(d) - 6)*b^2/x^5 - 1/5*
a^2/x^5

________________________________________________________________________________________

Fricas [A]  time = 1.91319, size = 506, normalized size = 1.84 \begin{align*} \frac{3 i \, b^{2} \left (2 i \, d\right )^{\frac{2}{3}} d x^{5} e^{\left (-2 i \, c\right )} \Gamma \left (\frac{1}{3}, 2 i \, d x^{3}\right ) + 6 \, a b \left (i \, d\right )^{\frac{2}{3}} d x^{5} e^{\left (-i \, c\right )} \Gamma \left (\frac{1}{3}, i \, d x^{3}\right ) + 6 \, a b \left (-i \, d\right )^{\frac{2}{3}} d x^{5} e^{\left (i \, c\right )} \Gamma \left (\frac{1}{3}, -i \, d x^{3}\right ) - 3 i \, b^{2} \left (-2 i \, d\right )^{\frac{2}{3}} d x^{5} e^{\left (2 i \, c\right )} \Gamma \left (\frac{1}{3}, -2 i \, d x^{3}\right ) - 12 \, a b d x^{3} \cos \left (d x^{3} + c\right ) + 4 \, b^{2} \cos \left (d x^{3} + c\right )^{2} - 4 \, a^{2} - 4 \, b^{2} - 4 \,{\left (3 \, b^{2} d x^{3} \cos \left (d x^{3} + c\right ) + 2 \, a b\right )} \sin \left (d x^{3} + c\right )}{20 \, x^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x^3+c))^2/x^6,x, algorithm="fricas")

[Out]

1/20*(3*I*b^2*(2*I*d)^(2/3)*d*x^5*e^(-2*I*c)*gamma(1/3, 2*I*d*x^3) + 6*a*b*(I*d)^(2/3)*d*x^5*e^(-I*c)*gamma(1/
3, I*d*x^3) + 6*a*b*(-I*d)^(2/3)*d*x^5*e^(I*c)*gamma(1/3, -I*d*x^3) - 3*I*b^2*(-2*I*d)^(2/3)*d*x^5*e^(2*I*c)*g
amma(1/3, -2*I*d*x^3) - 12*a*b*d*x^3*cos(d*x^3 + c) + 4*b^2*cos(d*x^3 + c)^2 - 4*a^2 - 4*b^2 - 4*(3*b^2*d*x^3*
cos(d*x^3 + c) + 2*a*b)*sin(d*x^3 + c))/x^5

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \sin{\left (c + d x^{3} \right )}\right )^{2}}{x^{6}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x**3+c))**2/x**6,x)

[Out]

Integral((a + b*sin(c + d*x**3))**2/x**6, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sin \left (d x^{3} + c\right ) + a\right )}^{2}}{x^{6}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x^3+c))^2/x^6,x, algorithm="giac")

[Out]

integrate((b*sin(d*x^3 + c) + a)^2/x^6, x)